NAIST Simultaneous Speech Translation System for IWSLT 2023

Ryo Fukuda¹, Yuta Nishikawa¹, Yasumasa Kano¹, Yuka Ko¹, Tomoya Yanagita¹, Kosuke Doi¹, Mana Makinae¹, Sakriani Sakti²¹, Katsuhito Sudoh¹, Satoshi Nakamura¹

¹Nara Institute of Science and Technology, Japan ²Japan Advanced Institute of Science and Technology, Japan

Our Systems

SimulS2T for En-{De,Ja,Zh}

Model: Multilingual ST with pretrained models

• Encoder: HuBERT with Inter-connection

Decoder: mBART50 decoder layers

Training: Two-stage fine-tuning

1. Multilingual ST corpora

2. Prefix pairs extracted using Prefix Alignment (PA)

• Policy: Local Agreement [Liu+2020]

■ SimulS2S for En-Ja

- Pronunciation Estimation
 - subword to Japanese pronunciation (katakana)
 - LSTM with wait-2
- Acoustic model + Vocoder
 - Tacotron2 and neural vocoder

Effective connection between pre-trained Encoder and Decoder

> Aggregate hidden states from intermediate layers of HuBERT → Input it to the mBART Decoder

Data augmentation for prefix-to-prefix translation

> Extract prefix pairs using offline translation → fine-tune an offline ST model for SimulST

Source Prefix	Prefix Translation (gloss)	Offline translation		
<u> </u>	<u>私は</u> 。(<u>I</u> .)			
<u>I</u> bought	<u>私は</u> 買った。 (<u>I</u> bought)	エリナ		
<u>I</u> bought a	<u>私は</u> 一つ買った (<u>I</u> bought one)	私はペンを買った		
I bought a pen	<u> 私はペンを買った</u> (<u>I bought a pen</u>)			
Prefix pairs				
- •	私は"), ought pens.", "私はペンを買っ	<i>+</i> – "\1		

SimulS2T

- Setup: Local Agreement with n = 2 (LA-2), chunk size = $200 \sim 100$ ms
- > PA-fine-tuned model outperformed an offline baseline
 - The best En-Ja results came from filtering 73% of prefix pairs
 - ⇒ Reducing unbalanced pairs in distant languages is important
- Filtering did not work well for En-De and En-Zh
- > Inter-connection worked for En-De and En-Ja
 - ⇒ Shared aggregation weights were

Results with and w/o Inter-connection.						
Aodel	En-De En-Ja	En-Zh	Ave.			

Model	En-De	En-Ja	En-Zh	Ave.
HuBERT + mBART	30.47	15.71	25.01	23.73
w/ Inter-connection	30.89	15.89	24.75	23.84

- helpful across multiple languages
- Fixed-size policy can be a good choice in practice.
 - Local Agreement was faster than fixed-size policy in non-computation-aware AL
 - Local Agreement was slower than fixed-size policy in computation-aware AL

Submitted S2T systems on MuST-C v2 tst-COMMON.

Lang pair	chunk size	BLEU	AL
En-De	950 ms	29.98	1964
En-Ja	840 ms	15.32	1974
En-Zh	700 ms	22.11	1471

SimulS2S

- Setup: ASR_BLEU with Whisper-large
- > SimulS2S resulted in much worse compared to S2T En-Ja
 - BLEU 15.32 → ASR_BLEU 9.87
 - S2S had a character error rate of 28.3%
 - Japanese TTS has difficulty controlling intonation
 - ⇒ Significant room for improvement in the TTS

Submitted S2S system on MuST-C v2 tst-COMMON. StartOffset EndOffset ASR BLEU ATD 9.87 2495 4135 3279

Summary

- SimulS2T results showed
 - effectiveness of Prefix Alignment and Inter-connection.
 - superiority of fixed policy in computation-aware latency.
- SimulS2S results showed
 - promising performance by simple cascade of SimulS2T and incremental TTS.