
Multimodal Voice Activity Prediction:
Turn-taking Events Detection in Expert-Novice Conversation

Kazuyo Onishi

Nara Institute of Science and

Technology

Ikoma-shi, Nara, Japan

onishi.kazuyo.oi5@is.naist.jp

Hiroki Tanaka

Nara Institute of Science and

Technology

Ikoma-shi, Nara, Japan

hiroki-tan@is.naist.jp

Satoshi Nakamura

Nara Institute of Science and

Technology

Ikoma-shi, Nara, Japan

s-nakamura@is.naist.jp

ABSTRACT
Predicting the timing of utterances in dyadic conversations is essen-

tial for achieving natural interactions between humans and virtual

agents. Since the former often use non-verbal cues to adjust the

order of their speech, this study proposes a multimodal model in-

corporating non-verbal features using a Transformer-based voice

activity prediction model. First, in line with previous research, we

reproduced a baseline model that utilized audio features (audio

waveform, voice activity frame, and voice activity history) as in-

puts. To this baseline model, we added non-verbal features: gaze

direction, action units, head pose, and articular points. We com-

pared our multimodal model with the baseline model to investigate

the impact of non-verbal cues on voice activity prediction. We uti-

lized a dyadic expert-novice conversation dataset and evaluated

the average outcomes across ten model trainings. Results revealed

that our proposed models with all the features improved the accu-

racy of the next speaker prediction by 2.3% and back-channeled

prediction by 1.8% (p-value < 0.025). In particular, action units may

contribute significantly to the turn-shift and back-channeled predic-

tions. This study demonstrates that including non-verbal features

in Transformer-based turn-taking models enhances the efficacy of

models for predicting voice activity in dyadic conversations.

CCS CONCEPTS
• Human-centered computing→ Human computer interaction
(HCI).
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1 INTRODUCTION
Turn-taking is a skill employed to ensure smooth communication

and mutual understanding, wherein participants alternate speaking

roles [44]. Given the inherent difficulty of simultaneously speaking

and listening during a conversation, participants must effectively

coordinate their roles as speakers and listeners. Humans fluently

coordinate such role assignments by quickly switching between

speaker and listener roles within 200 ms [28]. This turn-change

speed is remarkable, considering it is comparable to human reaction

times. Moreover, speaker transitions often occur in a manner that

overlaps with the current speaker’s speech. Such overlaps are not

merely switching errors but are common phenomena in fluent dia-

logues. Thus, proper conversational switching is very sophisticated,

and humans take turns with speakers based on various factors.

However, virtual agents do not yet have sufficient turn-taking

capabilities [17]. They frequently demonstrate a tendency to inter-

rupt users or delay their own responses, and the lack of prompt

feedback can disrupt the natural flow of conversation. This prob-

lem reflects the fact that many virtual agent systems identify a

certain period of silence (typically 700 ms) before starting speech.

Although setting a shorter silence threshold can hasten response

times, it may also result in user interruptions. On the other hand, a

long silence threshold might lead the user to mistakenly perceive

the system as unresponsive. Moreover, the timing of the speech

onset varies depending on the utterance and content, necessitating

context-specific assessment. Therefore, turn-taking systems with

fixed silence thresholds face such challenges as limited response

speed and the inability to adapt to different turn-taking dynamics

in varying situations [50, 35].

Another critical aspect of turn-taking is the role of the back-

channel. When generating back-channel, since the listener does

not intend to take a turn, it is vital to distinguish these actions from

those of the current speaker who is attempting to claim the speech

role, as previously mentioned. Although back-channel appears to

occur at random intervals, humans are adept at recognizing its

proper timing and turn shifts. Furthermore, since a back-channel

generally does not intend to claim a turn, it is influenced by different

factors than those involved in predicting turn shifts [4]. Generating

appropriate back-channel for virtual agents is essential to improve

user engagement [20, 47].

Hence, turn-taking predictions are pivotal for systems like vir-

tual agents [46, 52]. Incorrect timing obstructs communication and

conveys unintended messages to conversation partners [23]. Users

are more satisfied with virtual agents when they perceive them as

courteous and personable. Since appropriate turn-taking improves

such satisfaction, we are working on a model that uses non-verbal

https://doi.org/10.1145/3623809.3623837
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features to achieve a human-like prediction of speech termina-

tion and encourages more natural responses. Previous studies have

shown that non-verbal cues provide helpful information for turn-

taking models, such as shifts of turns and back-channel [26, 25, 16,

29, 5, 22, 21]. However, these studies are merely models that predict

specific turn-taking events. In recent years, researchers have moved

beyond turn-taking events to general modeling by predicting voice

activity itself [12]. Although researchers have actively discussed

suchmodels for predicting voice activity regarding verbal and audio

cues, few studies have explored non-verbal features.

In this study, we propose a Transformer [48]-based multimodal

voice activity prediction model and investigate how adding non-

verbal features affects overall voice activity prediction and improves

turn-taking performance from a previously used-only audio fea-

tures model. We integrated gaze direction, action units, head pose,

and articular points in addition to the audio features from a previous

study [43, 36, 12] and examined the influence of each modality on

turn-taking events. Our results show that non-verbal cues provide

captivating information for audio features and are effective in voice

activity models. The contributions of this study are threefold.

(1) We proposed architecture that incorporates non-verbal fea-

tures into a voice activity prediction model.

(2) Our model showed that non-verbal features provide essential

information for voice activity prediction, and action units may

significantly impact them.

(3) Using non-verbal features suggests that virtual agents can

engage in natural conversations that faithfully mimic human com-

munication.

2 RELATEDWORK
The realization of turn-taking prediction necessitates understand-

ing the cues with which humans anticipate it. Previous studies have

identified a variety of predictive signals in dyads and multi-party

dialogues. These turn-taking cues mainly fall into three categories:

verbal, audio, and non-verbal features.

Verbal features refer to the uttered words and their semantic

and pragmatic information, both of which are crucial for a con-

versation’s progression. Completing a syntactic unit is intuitively

essential for the current speaker to believe that a turn has been

completed. Ward et al. [49] proposed an enhanced recurrent neural

network model that obviates the need for lexical annotation. This

model delivered promising results in turn-taking prediction for

English, Spanish, Japanese, Mandarin Chinese, and French. Ekstedt

et al. [11] proposed TurnGPT, a Transformer-based language model

that predicts shifts of speakers in spoken language. Their model,

trained on various written and spoken dialogue datasets, demon-

strated its ability to predict turn-taking by exploiting the context

and pragmatic completeness of dialogues.

Audio features, which are also employed in automated speech

recognition and speaker identification, are similarly crucial in turn-

taking. In turn-hold contexts, speakers maintain an even intonation

at the end of the speech; in turn-shift contexts, speakers raise or

lower their pitch [7]. Ekstedt et al. explored how prosody is reflected

in voice activity prediction, revealing the utilization of various

prosodic aspects of speech [10].

Non-verbal features encompass eye gaze and gestures. Speakers

look away at the beginning of a turn and shift their gaze toward

the listener at the end. Listeners also make eye contact with the

speaker for most of the turn, looking away when the turn is over

or when it transitions [24]. These patterns sometimes provide vital

information for turn-taking events, such as back-channel. In face-

to-face interactions, eyebrow movements and mouth openings also

function effectively as predictors [27]. Duncan’s analysis of turn-

taking cues [6] discovered that certain gestures retain a decisive

turn and can even override other signals. When speakers use tense

hand positions or movements away from the body, listeners rarely

attempt to take turns. The relationship between hand gestures and

shifts of turns is also evident in other studies [51, 18, 41].

Researchers have recently been experimenting with different

turn-taking models in the context of these modalities. Takeuchi

et al. proposed a context-dependent response timing model [45]

and used decision trees to sequentially decide whether to speak for

each analysis frame. Fujie et al. proposed a response timing model

that incorporated a first-order delay system and applied it to multi-

person conversations [14]. Sakuma et al. proposed an approach

that estimates the response timing of a spoken dialogue system

by using dialogue act estimation as an auxiliary task [38]. They

also used syntactic completion after a specific time, which indicates

whether the other party is about to finish speaking [39]. These

models have generally addressed various turn-taking problems

with separate models for tasks. Turn-taking involves a variety of

events; for instance, it should be possible to discern whether the

user continues speaking after a brief pause or whether the system

responds [42, 13]. It is also important that appropriate moments can

be identified at which back-channeling nod and other events can

be inserted while the user is speaking [30, 31, 37, 19]. After a user

begins to talk, it’s also essential to determine whether the utterance

is a regular lengthy one or a short listener response (back-channel)

[32, 40].

Addressing this situation, Skanzte proposed a unified approach

to these turn-taking events in a model that predicts voice activity

[43]. Its strength is that it can handle various turn-taking tasks in

a generalized manner without separating them. He took prosody

as input and predicted a future 3-second voice activity using Long

Short-Term Memory (LSTM) [15], a type of recurrent neural net-

work. Roddy et al. [36] also proposed expanded architecture in

which separate LSTM subsystems process acoustic and verbal fea-

tures at different timescales. Ekstedt et al. [12] extended the model

to a Transformer and improved its performance by adding innova-

tions to the output window. They also introduced a new evaluation

metric: predicting where to transition to different speakers during

speech and predicting back-channel locations during speech. They

further investigated the impact of prosody on the model and demon-

strated that the voice activity prediction model adequately captured

prosodic features [10]. However, while the model actively utilizes

verbal and audio cues, no method has yet incorporated non-verbal

language into a voice activity prediction model.

We investigated how adding non-verbal features affects overall

voice activity prediction and improves turn-taking performance

from the previously used audio-feature-only model. While non-

verbal features have proven effective in models that predict specific

turn-taking events [22, 21], this study is novel in that it investigates
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their impact on overall voice activity prediction. We incorporated

non-verbal cues (gaze direction, action units, head pose, and artic-

ular points) into the transformer-based voice activity prediction

model and showed that non-verbal features provide essential in-

formation for voice activity prediction. Using non-verbal features

may move virtual agents closer to human-like communication.

3 TRANSFORMER-BASED VOICE ACTIVITY
PREDICTION MODEL

This section describes the voice activity prediction model proposed

in previous studies [12, 10]. Fig. 1 shows the flow from voice ac-

tivity prediction to determine turn-taking events. This model isn’t

specifically trained for a particular turn-taking event but makes

turn-taking decisions based on predictions of future voice activity.

With the discrete output window proposed by Ekstedt et al., we

establish eight bins, divided into four unequal regions of 0.2, 0.4, 0.6,

and 0.8 seconds, which reflect the reality that the further into the

future we look, the lower the prediction. We calculate the activity

ratio across each bin, and if it exceeds 50%, we regard it as active

and create a discrete one-hot representation of size (2, 4). We map

the vectors to the indices by treating them as binary numbers. Until

now, Ekstedt et al. have treated this model as a projection problem

that yields the same output length for the input. However, when

implemented in a system such as a virtual agent, we need to predict

subsequent voice activity, and so we are moving to a prediction

problem that outputs one frame of future voice activity for each

input.

As in previous studies, we define four turn-taking events:

• SHIFT/HOLD: predicts the next speaker during mutual si-

lences.

• SHORT/LONG: predicts the length of utterance initiation

(short vs. long) during shift events.

• SHIFT-pred: predicts the next speaker during active speech.

• Back-channel (BC) -pred: predicts future back-channels.

We evaluated these metrics through zero-shot classification.

These implementations are based on source code [9] posted by

previous studies.

4 PROPOSED MULTIMODAL MODEL
In this section, we present our proposed multimodal model with

non-verbal features as input and extend the Transformer-based

voice activity prediction model of Section 3 to include non-verbal

cues in addition to the audio features used in previous studies.

We describe the architecture of the proposed multimodal model

in Section 4.1, the audio features in Section 4.2, and a method for

extracting non-verbal features in Section 4.3.

4.1 Model Architecture
We created a multimodal voice activity prediction model (Fig. 2

that uses audio features (audio waveform, voice activity frame,

and voice activity history) and non-verbal features (gaze direction,

action units, head pose, and articular points). It consists of two

conditions: (1) an audio condition, which obtains an embedded

representation from audio waveforms and voice activity-related,

Figure 1: Mapping of turn-taking events from voice activ-
ity prediction: Future voice activity is predicted in a non-
uniform output window andmaps vector to an index. Output
classifies and evaluates each turn-taking event with a zero
shot.

and (2) a non-verbal condition, which processes non-verbal cues to

obtain embedded expressions. Both are described below.

(1) Audio condition The audio condition handles audio wave-

forms, the voice activity frame, and the voice activity history. As

in preceding studies, we used Contrastive Predictive Coding (CPC)

[33], a pre-trained model, to derive a sequence representation of

the audio waveform. The CPC output is a 100-Hz, 256-dimensional

frame representation. But since other features are at 25-Hz, a 1D-

convolutional layer that obtains a 25-Hz sequence representation

is denoted as𝑊𝐶 ∈ R256. The voice activity frame and history are

input into a linear layer to obtain a 256-dimensional sequence rep-

resentation. We combined these representations to derive sequence

representation 𝑉𝐶 ∈ R256. The voice activity condition is added

to the production of the audio waveform condition, and this sum

is processed through the Transformer block to obtain the audio

representation, denoted as 𝐴𝐶 = (𝑊𝐶 +𝑉𝐶) ∈ R256.
(2) Non-verbal condition We employed gaze direction, action

units, head pose, and articular points as non-verbal features and

combined the data of the two people in the same way as audio

waveforms. Each modality is input to a linear layer to obtain a
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Figure 2: Architecture of proposed multimodal model divided into two parts: (1) processing audio features and (2) processing
non-verbal features, which they input to Transformer block to obtain output.

64-dimensional series representation. We concatenated these rep-

resentations and input them into a Transformer block to derive a

non-verbal expression, denoted as 𝑁𝐶 ∈ R256.
The obtained audio 𝐴𝐶 and non-verbal 𝑁𝐶 representations are

concatenated and input into the transformer block, processed in

the final linear layer, where the logit is output. The logit outputs

a discrete series of voice activity over the next 2 seconds, as in

previous studies [12].

4.2 Audio Features
Previous studies employed audio features (audio waveform, voice

activity frame, and voice activity history) as predictors [12]. We

also adopted them and describe the extraction and input methods

below.

Audio waveform The speaker 1 and speaker 2 audio are mixed

and treated as a single audio channel. Apart from voice normaliza-

tion, we did not perform any special preprocessing here because

we directly processed the raw waveforms and extracted features

from the model.

Voice activity frameWe represent the voice activity frame as a

25-Hz frame vector𝑉𝐴𝑓 (𝑡) ∈ {0, 1}2, where 1 indicates the interval
with voice activity, and 0 denotes it without. Given that the video

data, from which we extracted the non-verbal features, are at 25

fps, we also set the voice activity frame at this frequency. Since the

input consists of mixed audio waveforms, it plays a crucial role in

differentiating between speakers.

Voice activity history We represent the voice activity history

as vector𝑉𝐴ℎ (𝑡) ∈ R5, indicating the voice activity’s ratio between
speakers over a specific time range in the past ( -inf:60, 60:30, 30:10,

10:5, 5:0 seconds). Eq. 1 describes the proportion of voice activity

in each interval:

𝑉𝐴ℎ𝑖𝑠𝑡𝑜𝑟𝑦 (𝑠𝑒𝑐𝑡𝑖𝑜𝑛) =
𝑉𝑜𝑖𝑐𝑒𝐴𝑐𝑡𝑖𝑣𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑝𝑒𝑎𝑘𝑒𝑟1

𝑉𝑜𝑖𝑐𝑒𝐴𝑐𝑡𝑖𝑣𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑝𝑒𝑎𝑘𝑒𝑟2
. (1)

Generally, we expect longer speaker-turn retention times to in-

crease the probability of turn-shifting. The voice activity history

provides extensive contextual information outside the receptive

field of such acoustic models. However, previous research has not

discussed how voice activity history contributes to learning.

4.3 Non-verbal Features
This section describes the non-verbal modalities used for learning.

Although we are focusing on non-verbal features, it is easy to imag-

ine that they do not function independently but rather complement

verbal and audio elements. Therefore, based on the audio features

from previous study [12], we extract non-verbal features using

OpenFace [1] and OpenPose [3] based on the following non-verbal

features: gaze direction, action units, head pose, and articular points.

We describe each extraction method below.

Gaze directionWe extracted the gaze direction using OpenFace

and obtained the average (𝑥,𝑦) coordinates of the right and left

eyes in the radians from the video data provided in full HD. We

represented the detection accuracy, which depends on the quality

of the video and the head’s orientation, as 𝑁𝐶𝑔𝑎𝑧𝑒 (𝑡) ∈ R3 with an

additional confidence value. Eye gaze significantly impacts turn-

taking. However, the extent to which it works in a frontal shot

dialogue has yet to be determined. Given that many agent systems

engage in front-facing dyadic dialogues as well as the presence

of webcams and similar devices on monitors, this study’s results

might provide helpful information.
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Figure 3: Non-verbal features, including gaze direction, action
units, head pose, and articular points

Action units We also extracted action units using OpenFace.

These values, which depict facial expressions and movements, are

represented by 𝑁𝐶𝑎𝑢 (𝑡) ∈ R18 with inputs of 1, 2, 4, 5, 6, 7, 9,

10, 12, 14, 15, 17, 20, 23, 25, 26, 45, and confidence values. Since

no research has employed action units for turn-taking prediction,

our study offers new insights. As previously mentioned, lip and

eyebrow movements correlate with turn-taking and show promise

as an effective source of information for voice activity prediction.

We also expect to capture specific facial expressions, such as smiling

actions, before back-channel occurrences.

Head poseWe also extracted head poses using OpenFace. Head

pose detection can capture such behaviors as nodding, which we

expect to correlate with shifts of turns and back-channel. We pro-

vided the head coordinates (𝑥,𝑦, 𝑧), and the difference from one

previous frame is extracted as a feature using Eq. (2), represented

by 𝑁𝐶ℎ𝑒𝑎𝑑 (𝑡) ∈ R3:

ℎ𝑒𝑎𝑑𝑥,𝑦,𝑧 (𝑡) =
√︃
((𝑥,𝑦, 𝑧)𝑡 − (𝑥,𝑦, 𝑧)𝑡−1)2 . (2)

Articular points We extracted the articular points using Open-

Pose. Considering the inference speed, the video was resized from

full HD to 320 x 180 pixels. The coordinates (𝑥,𝑦) of each joint can

be obtained, along with the confidence value of each joint point,

represented by 𝑁𝐶𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 (𝑡) ∈ R21. We used the joint points from

No. 1 to No. 7 (Fig. 3), and the difference from one previous frame

was extracted as a feature using the following formula (3):

𝐴𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟𝑛 (𝑡) =
√︂(

𝐴𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟𝑛𝑡 −𝐴𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟𝑛
𝑡−1

)
2

, (3)

where n is the number of the indirect points. Researchers have

already demonstrated that gestures influence turn-taking and en-

hance the shifts of turn accuracy and other operations.

5 EXPERIMENTAL EVALUATION
In this section, we investigate how non-verbal features affect the

prediction of voice activity through experiments. We describe the

data used in Section 5.1, a plan for investigating the impact of

non-verbal cues in Section 5.2, and the results in Section 5.3.

5.1 Data
For the model training, we used the NoXi Database [2] and show

its recording in Fig. 4. This database is comprised of audio and

video recordings of an expert and a novice in separate rooms who

are interacting through a screen and actively discussing a single

topic. The situation resembles a virtual agent system, where a

camera mounted on a monitor captures the interaction through the

screen, with the camera positioned in front of the monitor. Thus,

eye movements and gestures are also represented similarly to such

environments. This corpus was recorded in such different regions

as France, Germany, and the UK, with 87 participants in multiple

languages, including English, French, and German. We used all

these files for our study because we focused on non-verbal rather

than verbal features. Since the NoXi database does not contain

annotations for voice segments, we annotated them manually by

two annotators.

As shown in Table 1, we split this corpus into 16.8 hours for

training data, 3.4 for validation data, and 5.3 for test data. The

sample size of these data is sufficient, since Skantze et al. [43] used

the HCRC Map Task corpus with 10.7 hours of training data and 3.6

hours of test data.We also confirmed that the number of turn-taking

events in the test data was sufficient. However, there was a bias in

the number of samples for the SHIFT/HOLD and SHORT/LONG

events. This bias is a natural outcome, considering the high speaker

retention and frequent short nods in actual dialogues. We evenly

distributed the test data to files recorded in each region to minimize

the bias caused by regional differences in non-verbal features and

other factors.

Figure 4: Dialogue between an expert and a novice: Recording
shows them in separate rooms, discussing a single topic with
counterparts projected on a screen.

5.2 Procesure
We used a multimodal voice activity prediction model to investigate

how non-verbal features affect audio features. Generally, non-verbal

cues provide helpful information in voice activity at the turn-shift

and back-channel points. Therefore, multimodal models may pro-

vide more accurate predictions at turn-taking event points than

audio feature-only models. We studied the effects of non-verbal

features by learning under three main conditions. (1) Only Audio

Features: We just learned with audio features, showing the roles of

audio waveforms, voice activity frames, and voice activity history.

The voice activity frame provides helpful information for speaker

identification concerning the mixed audio waveform, and the voice

activity history includes information about turn-shifting. We veri-

fied that combining these three audio features yields a sufficient

baseline. (2) Only Non-verbal Features: We trained using only non-

verbal features and verified that gaze direction, action units, head

pose, and articular points have information about turn-taking. We

expect that non-verbal features will capture information for such
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Table 1: Dataset used for training: We used NoXi database from the dyad corpus, whose audio and video files were split into
training, validation, and test data.

Datasets

Number of

Sessions

Duration [h] SHIFT/HOLD SHORT/LONG SHIFT-pred BC-pred

Train 54 16.87 1015/11757 3382/1015 1015 3375

Validation 12 3.35 246/2447 595/246 246 592

Test 18 5.29 354/3659 1007/354 354 1005

potent modalities as audio features, and researchers have yet to

train such features to be used independently. We are interested in

the extent to which non-verbal features are informative for predict-

ing voice activity. (3) Audio + Non-verbal Features: We tested how

much audio and non-verbal features improve scores relative to a

model with only audio features. We checked the contribution made

by each modality by adding one modality at a time and visualized

a model’s output with only audio features and another with added

non-verbal features to see how the non-verbal features acted.

We trainedwith a 10-second inputwindow, sliding by 0.5 seconds.

All the predictors employed a transformed model consisting of a

causal encoder with a hidden layer size 256, 2 layers, 4 heads, and a

dropout rate of 0.1. We trained our model with a checkpoint of 0.2

and an early stopping criterion of 7 epochs. We used AdamWwith a

learning rate of 3.63e-4 and a batch size of 128 for optimization. We

varied the seed from 0 to 9, trained themodel 10 times, and evaluated

it with its average. The model and training were implemented in

Python using the Py-Torch [34] libraries. We created our model

based on codes from previous studies [8] and and are available

online
1
.

5.3 Results
Table 2 shows the training results for each modality selection. We

show cross-entropy loss, a measure of voice activity prediction accu-

racy, and F1 scores for various measures of turn-taking ability. The

numbers 2 in parentheses indicate the standard deviations. We im-

plemented cross-entropy loss using PyTorch’s TORCH.NN.FUNC-

TIONAL.CROSS_ENTROPY function and used the weighted F1

scores for SHIFT/HOLD and negative sampling for SHIFT-pred and

BC-pred to ensure equal numbers of positive and negative tasks.

The table’s top row shows a case that selected only audio features,

the middle row shows a case that selected only non-verbal features,

and the bottom row shows a case that picked both audio and non-

verbal features. The value with the best score in each section in

highlighted in bold.

(1) Audio Features Compared to using only audio waveforms,

incorporating the voice activity frames increased the scores for all

the evaluation metrics. Due to the reduced cross-entropy loss, the

voice activity frame facilitated speaker identification in the mixed

speech and improved the prediction accuracy of voice activity. The

voice activity history significantly improved the SHIFT-pred scores

by +2.1% compared to those without a voice activity history, con-

firmed by a two-tailed T-test(𝑝 < 0.025).
(2) Non-verbal Features Surprisingly, even with only nonver-

bal features as input, voice activity prediction achieved nearly 70%

1
https://github.com/ahclab/turntaking

accuracy in turn-shift prediction and almost 60% in back-channel

prediction. This result exceeded the results obtained using only

audio waveforms, suggesting that non-verbal features significantly

impact turn-taking. However, the cross-entropy of the non-verbal

feature-only input exceeded that of the audio waveform-only in-

formation. Furthermore, when analyzing the breakdown of non-

verbal cues, we found marked differences in back-channel predic-

tion scores; they were higher for gaze direction and action units,

with action units standing out.

(3) Audio + Non-verbal FeaturesWhen individually adding

non-verbal features to the audio features, we obtained a significant

difference in SHIFT-pred for adding gaze direction and action units

(𝑝 < 0.025). In addition, we observed a significant solid difference

(𝑝 < 0.025) in BC-pred when action units were added. On the

other hand, we did not obtain any meaningful differences between

SHIFT/HOLD and SHORT/LONG. Table 3 shows the differences

between the model with audio features as input and all the proposed

non-verbal combinations. The results showed a +2.3% improvement

for SHIFT-pred and +1.8% for BC-pred, confirming a significant solid

difference (𝑝 < 0.025). The number of parameters for the baseline

model was 5,259,515 (18.15MB), and the number of parameters for

the proposed model was 10,642,543 (39.69MB). Also, the inference

time for one frame when using NVIDIA A100 NVA100-80G was

1.15E-02 seconds and 1.57E-02 seconds, respectively.

We visualized the output in Fig. 5 to present the changes. The top

graph shows the training model with only the audio features added,

and the bottom chart shows it with non-verbal features added. The

light blue intervals show the expert’s speech segments, and the pale

yellow intervals show those of the novice. The blue line represents

the expert’s speech turn probability; the red line is the novice’s

speech turn probability. A user with a higher chance is more likely

to take a speech turn. The horizontal axis is a time series, and the

unit is seconds. We classified the intervals from (1) to (4) in the areas

of particular variation in the graph. In interval (1), the audio feature

model predicts a high probability that an expert’s speech will turn

immediately after the novice’s speech ends; our multimodal model

has a gentle probability curve. In interval (2), the prior research

model shows a high probability that a speech turn will occur; our

model shows a turn-hold. We can see the model’s high accuracy,

considering the short interval of the expert’s speech and classifying

it as a novice speech turn. The gaps in interval (3) show breaks

where the expert and novice speak to each other. Ideally, the expert

and novice speech turn probabilities should be 0.5 each; our model

achieves this level. Interval (4) is the section that identified where

fast speech turns from novice to expert. Our model immediately

shows that the speech turn has shifted, whereas the feature-only

model is somewhat unstable and slow to respond.

https://github.com/ahclab/turntaking
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Table 2: Training results with each modality selection: We showed cross-entropy loss and F1 score for turn-taking performance.
Bolded letters are best scores for each item. Numbers in parentheses indicate standard deviation (SD). Light gray row is baseline
model, and dark gray row is proposed model.

Audio Features Non-verbal Features

Model

Performance

Turn-taking Performance (F1 score)

Waveform

VA-

frame

VA-

history

Gaze AU Head Articular

Cross

Entropy

Loss

SHIFT/

HOLD

SHORT/

LONG

SHIFT-

pred.

BC-

pred.

✓
3.145

(0.010)

0.734

(0.123)

0.629

(0.008)

0.657

(0.033)

0.650

(0.016)

✓ ✓
2.452
(0.011)

0.885

(0.008)

0.804

(0.022)

0.704

(0.022)

0.691
(0.010)

✓ ✓ ✓
2.460

(0.009)

0.888
(0.006)

0.811
(0.012)

0.725
(0.011)

0.687

(0.013)

✓
3.421

(0.011)

0.814

(0.128)

0.625

(0.035)

0.656

(0.102)

0.530

(0.014)

✓
3.409

(0.009)

0.837

(0.026)

0.649
(0.015)

0.676

(0.029)

0.591

(0.013)

✓
3.435

(0.014)

0.856
(0.000)

0.643

(0.026)

0.697
(0.007)

0.428

(0.061)

✓
3.438

(0.013)

0.856
(0.001)

0.631

(0.032)

0.692

(0.012)

0.467

(0.053)

✓ ✓ ✓ ✓
3.394
(0.012)

0.825

(0.038)

0.638

(0.014)

0.674

(0.023)

0.598
(0.015)

✓ ✓ ✓ ✓
2.450

(0.010)

0.889

(0.005)

0.810

(0.014)

0.738

(0.007)

0.688

(0.008)

✓ ✓ ✓ ✓
2.437
(0.005)

0.897
(0.010)

0.812

(0.010)

0.744

(0.013)

0.707
(0.010)

✓ ✓ ✓ ✓
2.448

(0.007)

0.892

(0.008)

0.814

(0.007)

0.739

(0.013)

0.693

(0.009)

✓ ✓ ✓ ✓
2.450

(0.010)

0.891

(0.006)

0.816
(0.018)

0.735

(0.014)

0.691

(0.010)

✓ ✓ ✓ ✓ ✓ ✓ ✓
2.449

(0.006)

0.890

(0.009)

0.812

(0.013)

0.748
(0.012)

0.705

(0.005)

Table 3: Effect size and significant differences for audio features plus non-verbal features: SHIFT-pred and BC-pred confirmed
large significant differences.

Audio Features,

mean of F1 score (SD)

Audio + None-verbal Features,

mean of F1 score (SD)

Cohen’s 𝑑 𝑃 value

SHIFT/HOLD 0.888 (0.006) 0.890 (0.009) 0.144 0.782

SHORT/LONG 0.811(0.012) 0.810 (0.013) 0.035 0.950

SHIFT-pred. 0.725 (0.011) 0.748 (0.012) 1.985 0.000

BC-pred. 0.687 (0.013) 0.705 (0.005) 1.900 0.001

6 DISCUSSION
We examined the roles of the voice activity frame and the voice

activity history, which previous studies did not test. Incorporating

voice activity frames reduced the cross-entropy loss compared to

using only audio waveforms. This result suggests that the voice

activity frame facilitates speaker identification in mixed audio and

improves the prediction accuracy of voice activity. Furthermore,

introducing the voice activity history improved the SHIFT-pred

scores, suggesting that it provides valuable information in the turn-

shift context. This result supports the notion that voice activity

history provides broad contextual information beyond the receptive

range of acoustic models.

Next we addressed turn-taking prediction using only non-verbal

features as input. Even with non-verbal features only, we achieved

nearly 70% accuracy in turn-shift prediction and almost 60% in

back-channel prediction. On the other hand, the cross-entropy loss
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Figure 5: Visualization of turn-taking prediction: Blue line is probability of an expert speech turn, and red line is probability of
a novice speech turn. Interval (1) represents a long silent interval, interval (2) represents turn holding, interval (3) represents
two people speaking simultaneously, and interval (4) represents a quick turn change.

itself, which represents voice activity prediction, is high. This result

does not indicate that non-verbal features contribute highly to voice

activity prediction but provide essential information about turn-

taking events. Looking at the non-verbal modalities individually,

the back-channel scores are notably higher for action units, which

give brow and eyelid movements, facial muscles, and lip movements,

suggesting that a human might simultaneously smile or blink when

nodding, for example.

We added non-verbal features to the audio features and obtained

improvements with SHIFT-pred and BC-pred. In particular, when

we added gaze direction and action units, a primary and significant

difference was obtained for SHIFT-pred. In BC-pred, the addition

of action units showed a tremendous difference. This result is con-

sistent with the significantly higher back-channel scores observed

when training exclusively with action units, proving that eyebrow

and eyelid movements, facial muscles, and lip movements accu-

rately predict back-channel activity. The action units, which were

significantly different in both SHIFT-pred. and BC-pred. could be

a very important modality. On the other hand, head poses and

articular points showed no improvement in turn-taking events,

a surprising result because turn-taking is related to head move-

ments and gestures. One possible reason is that the accuracy of

the three-dimensional coordinates of the head pose by OpenFace is

relatively low compared to the two-dimensional gaze vector, which

absorbs the information of the head-lowering motion. Previous

studies also observed the relationship between gesture and turn-

taking, although we did not find that joint points functioned as

features. Since the training data consisted of multiple regions and

languages, perhaps unique characteristics were not extractable due

to significant cultural and individual differences. In addition, we

did not obtain any dominance differences for SHIFT/HOLD and

SHORT/LONG in any of the modalities. This result may reflect

event bias, which is not surprising given that the sample size for

turn-hold is much larger than for turn-shift and more challenging

to predict than turn-hold. Perhaps there were also more short turns

(back-channel) than long turns, creating a data imbalance that pre-

vented differences. Another factor could be the high performance

of the baseline model, where SHIFT/HOLD was at nearly 90% and

SHORT/LONG was over 80%.

The question arises whether the models trained on our human-

human data can also be used to predict turn-taking in human-

computer dialogues. Human-human and human-computer interac-

tions generally look very different, and human-human, multi-turn-

taking behavior is not necessarily a role model of the behavior we

want from the system. Skantze tested this issue with a human-robot

spoken dialogue used for evaluation [43]. We proposed a logistic

regression model trained on turn-shifted and turn-hold human-

robot conversations using the hidden nodes of the voice activity

prediction model as input and found that it achieves very high

scores. Thus, the voice activity prediction model we employed will

likely show valid results in human-computer dialogues.

7 CONCLUSION
We proposed a Transformer-based multimodal voice activity pre-

diction model for turn-taking. Our results show that non-verbal

features are also crucial in voice activity prediction models, partic-

ularly action units, which are essential for understanding speaker

turns and back-channels. These results offer a fresh perspective

for understanding and modeling turn-taking and provide beneficial

insights for the developers of virtual agents. Our future work will

investigate which numbers of action units are most effective for

forecasting. We will also include a new Japanese version of the

NoXi database to investigate the effects of cultural and individual

differences and seek room for improvement by fine-tuning only in

specific regions. We also plan to test this model’s effectiveness in a

natural virtual agent system.
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